
5SSEL026 – Language Construction Lecture 8 Artificial Languages 2

1

5SSEL026 – Language Construction
Lecture 8

Artificial Languages 2

Homies an Palones! (an homipalones.) Bona ta vaada yer dolly
old ekes agin. I ope yerv aw got yer bijou buns letted an yer feelin
fantabulosa. Now, jooj up yer riah, slap on yer oglefakes an start
exercisin yer luppers creevin. It’s showtime!
This introduction is written in Polari, a Gay cant used from the
late 1880s through to the 1980s. It has now largely died out, but a
few experienced users still remain.

WHY MAKE ARTIFICIAL LANGUAGES (2)?
Last week we looked at some of the reasons people make
artificial languages. This week we will look at some more reasons:

• To represent nonhumans in fiction. Many sci-fi and fantasy
books make use of the occasional fragment of unrecognisable
language to indicate difference; but for some authors this
hint of otherness is not enough. For these people, the
language, culture and history of their creations need to be set
out in some detail if they are to be properly represented to
the reader. Perhaps the most extreme case was J. R. R.
Tolkien. However, for most authors, their fictional languages
are only properly codified when they are converted for a
visual medium (film or TV). You may decide to flesh out one
of these underdefined languages for your language project.

• To keep secrets in plain sight. All languages keep secrets,
they exclude anyone who does not know the language from
accessing the information being exchanged. However, they
are also quite leaky: anyone can learn the language and
overcome the barrier. Secret languages, technical languages,
cants, groupspeak, even academic register, are all subsets of
a language where an extra level of secrecy has been added;
they are restricted codes which both limit access to the
information being shared and allow speakers to more easily
differentiate in-group from out-group. Polari (as used in the
introduction, above) is a particularly developed example of a
cant.

• Because not all languages are for exchanges between
humans. While computer languages are the most recent
example of this, they come from a long tradition of signalling
to domestic animals. For instance, shepherds have complex
whistling systems for working with their dogs. However, the
development of computer languages over the past seventy
years offers an informative compressed timescale for the
development of communication between humans and
nonhumans; not only have computer languages become
more sophisticated in the information they can convey,
computers themselves have undergone a steady and
relentless increase in their capacity to understand us. How
this has happened provides an analogy for the origins of
language itself.

• For fun! This is perhaps the main reason for creating artificial
languages. We are sometimes labelled as Homo ludens1 (the
game-playing human), so why not play games with language?

FANTASY LANGUAGES
Fictional languages are often invented by an author because the
fantasy world they are creating has become quite real for them.
They feel the need to define not only contexts for their
characters and events, but also co-texts and sub-texts. It is not
enough to know that a character is a member of tribe X, and tribe
X does Y, it is necessary to show how the tribe came to do what
they do. A large part of the co-text is the language they use to do
Y, and the language has to accommodate the sub-texts of why Y
is done.

Fictional languages often start as just a collection of sounds (or
script forms) which indicate that something non-English is

happening. However, they can then build into word-forms which
represent meanings which map quite closely back to English.
Some go on to become syntactic systems which often follow the
syntax of English; and a few develop grammatical systems which
finally begin to distance them from their English origins. It’s a bit
like the birth of a new natural language, but in a considerably
compressed timescale. Often the original author ceases to be
interested in further development, and either enthusiasts take it
forward (e.g. Klingon) or transfers to film or TV demand more
realism (e.g. Dothraki). Occasionally the original author does the
whole job himself (e.g. J. R. R. Tolkien’s Quenya Elvish).

Sometimes the author (or someone else) adds a specialist script.
This is the case with Klingon and, to a certain extent, Tolkien’s
languages. In the actual world, writing systems are culturally
bound to the languages they encode; but in the fantasy world
they often represent prejudices about what counts as writing –
they are culturally bound to the writing system of the language
inventor’s first language. Writing – making a permanent record of
spoken language – has been invented at least five times in human
history: Egyptian (pictograms), Sumerian (ideograms), Harappan
(syllabograms), Chinese (logograms), and Olmec (pictograms).
There have also been some novel interpretations of pre-existing
systems (e.g. Korean, Cyrillic, Hiragana/Katakana, Arabic,
Cherokee) which have introduced new scripting concepts; and
there is at least one inexplicable outlier (Inca Quipu strings)
which we still don’t understand.

HOWEVER, YOU SHOULD NOT CREATE A SCRIPT FOR THIS
MODULE ASSIGNMENT! Stick to the Roman alphabet (and Roman
sounds), supplemented by accent markers if you wish.
Alternatively, you can use a phonetic alphabet, or mix phonetic
symbols with the Roman alphabet.

Famous fictional language creators include:

J. R. R. Tolkien, writer of The Hobbit, The Lord of the Rings, and
The Silmarillion. Tolkien created a detailed fantasy world with a
long history, a range of cultures each with their own traditions,
legends and heroes, and many languages. He began work on his
Elven series of languages in 1910, and continued until his death in
1973. By then he had substantial languages for Quenya and
Sindarin, sufficient languages for Eldarin and Avarin, and several
other sketched-out Elven languages2. He also produced the
sufficient languages of Khuzdul (Dwarvish), Númenórean,
Adûnaic, Valarin and Black Speech, and sketched out many
others.

Marc Okrand, designer of languages for the Star Trek franchise.
Tolkien produced languages for fun; Okrand was the first to be
employed to create a fantasy language. Initially, he created
sufficient Vulcan for the ST2 movie, sufficient Klingon for ST3, 5
and 6, and sufficient Romulan for ST2009. Klingon has been
adopted by a large fan base, and now has a few thousand users,
but probably only 25 fluent speakers. Nonetheless, this is
sufficient to make it the most popular fantasy language: it has its
own language institute and can now be classed as a substantial
language. In 2017 the US courts ruled that Paramount could not
hold a copyright over the language or the word Klingon because it
had “escaped” into public domain.

Okrand also designed the Atlantean language for the Disney film
Atlantis: The Lost Empire.

David J. Peterson, designer of languages for Game of Thrones
and Defiance. Peterson won a Language Creation Society
competition to design the GoT languages Dothraki and Valyrian,
and was later commissioned to produce the Castithan, Irathient
and Omec languages for Defiance. Since 2014 he has been

5SSEL026 – Language Construction Lecture 8 Artificial Languages 2

2

involved in a series of projects, creating a further thirteen
languages for TV and cinema.

Dothraki is a sufficient language designed around horses, and
there are many equine references in it. Valyrian, a substantial
language, also has many interesting features (e.g. four genders:
lunar, solar, terrestrial, or aquatic), but no script was designed for
it. The Defiance languages do have scripts, and Castithan, a
sufficient language, has a script which is syllabic rather than
alphabetic. Each new language that Peterson creates seems to be
more complex than the previous one, but it seems that Valyrian
remains the language he is most committed to.

Paul R. Frommer, designer of Na’vi for Avatar and Barsoomian
for John Carter of Mars. Frommer was contracted by James
Cameron, writer of Avatar, to flesh out his ideas for a Na’vi
language. Cameron has already decided on about 30 words, so
Frommer had to work from a pre-set phonological base to
generate a language sufficient for the film’s requirements. He
introduced some unusual grammatical features to the language
(e.g. tense marking in the middle of verbs) and established a
distinct phonology, always remembering that the final language
had to work within the speech ranges of human actors. By the
time the film was finished, Na’vi had a vocabulary of over 1,000
words, and was well within the range of a sufficient language.
The film established a fan base for the language, who have since
developed Na’vi into a substantial conlang. It even has an official
script (and several unofficial ones), despite Na’vi being identified
in the film as a language without writing.

Frommer went on to develop Barsoomian for John Carter of
Mars. He settled on a simple letter replacement code, but the
language is multimodal: lexical words (nouns and verbs) are
spoken, but grammatical words (pronouns, prepositions,
connectors, articles) are transmitted telepathically. This makes
speech quite staccato. Once again, Frommer was constrained by
the original description of the language; but Edgar Rice Burroughs
had been more fanciful in his linguistic ideas than James
Cameron, creating a language that was just too alien. Barsoomian
has, therefore, neither the completeness nor the fan following of
Na’vi.

SECRET LANGUAGES
Secret languages develop because a group of people need to hide
ideas in plain sight. They need to be able to exchange information
in the presence of others so that those others cannot access the
exchange. Essentially, therefore, a secret language is a code;
however, unlike the codes used by security services worldwide,
they are easily accessible by anyone who joins the encoding
community and is willing to make the effort to learn the code. It
is possible to become fluent in a secret language.

Secret languages are often not fully separated from local
languages and use a lot of their systems – lexis and grammar
particularly. For instance:

• Pig latin is a simple phonic reordering and incrementing of
syllables in otherwise standard English (remove the first
consonant cluster from a word and place it at the end,
followed by “ay” – igpay atinlay). It relies on the fact that we
do not immediately interpret the sounds as English, and we
need to practice both speaking and listening to produce and
understand it. Once we are “tuned in”, we have no problems.
The secrecy is in the unusualness of the form, not any
complex systematics. To do the written equivalent of pig-
latin, you can use another writing system (e.g. the futhark or
ogham script or Cyrillic, or any fantasy script that uses simple
letter replacement).

• Polari relies on English as a base structure but uses a variant
lexis (mostly nouns, verbs and adjectives). English grammar

and “little words” are largely unaffected. A listener needs to
know the new words to understand the code, but that is just
learning new vocabulary; and that is something we do when
we enter any new community of interest, such as a scientific
discipline. Polari’s origins involve a mixture of codes and
languages, not all of which are English based. It has roots in
several predecessor cants, including Elizabethan thieves’
cant, 18th Century Molly-house cant, 19th century prostitute
cant, 19th century theatrical language, Cockney, Yiddish, and
Romani, to name a few.

• Twinspeak (also known as idioglossia or cryptophasia) is
perhaps the most secret form of secret language. It is a
special code developed between close siblings, especially
twins; and It often starts as just new lexis – shared special
words – but it can later develop new grammar and
phonology. Often, because the twins share a great deal of
context, the signs are much-reduced markers of quite
complex meanings. The most notorious example of twinspeak
was June and Jennifer Gibbons, and it didn’t end happily.
After 14 years in Broadmoor for the crimes of theft, arson
and being seriously weird, they decided that one of them
could live a normal life if the other died. Soon after, Jennifer
died of a heart attack – no foul play was discovered. June has
lived a normal life ever since. The Gibbons case was,
however, an extreme case; most twinspeak is much more
benign, and it disappears when the twins go to school and
develop their own personalities.

WORKING WITH MACHINES
Computers were a product of code-breaking in WWII. The
German military put a lot of faith in a coding machine called
Enigma, which was supposed to produce almost uncrackable
ciphers. The code was changed daily, so even if the code for one
day was cracked, it did not help with the following day’s
messages. However, the Allies had Alan Turing, who made
another machine which could break the daily code within
minutes. It relied on a daily weather report (which always started
with the words, “the 6am weather report” and ended with “Heil
Hitler”. Ciphers can only be as irregular as the humans who use
them, and we are creatures of habit.

Computers were born in World War II: Alan Turing established
the principle of the fully programmable computing machine, and
John von Neumann invented the electromechanical architecture
that made the principle a reality. Grace Hopper then invented the
software interfaces, known as computer languages, which
allowed us to program the computers quickly and accurately.

Computer languages have gone through at least seven
generations. Some would say more, but these seven represent
my understanding of computer history.

• 1st generation: machine code. Instructions were rendered as
strings of numbers, supported by a syntax. So
15010414531602430417430400 could mean:

15 01 04 1453 16 02 4304 17 4304 00

Move
to
register

Number Four
digits

1453 Add to
register

Contents
of
location

4304 Store in
location

4304 End

• 2nd generation: assembler. Instructions were more language-
like:
MOV 1453; ADD #4304; STA #4304

• 3rd generation: programming languages. FORTRAN, COBOL,
ALGOL, BASIC, etc:
TOTAL = TOTAL + 1453

• 4th generation: multimedia languages. These were essentially
3rd generation languages with added tools to handle visual
and audio elements (e.g. VISUAL BASIC).

5SSEL026 – Language Construction Lecture 8 Artificial Languages 2

3

• 5th generation: programmable programs. Spreadsheets,
word processors, presentation software, etc.

• 6th generation: apps. Tasks are done by a series of
interrelated specialist apps. The user doesn’t need to know
the details of how a task is carried out. There is a high level of
integration between different task-based software
applications (e.g. Microsoft Office).

• 7th generation: “personality apps” (e.g. Siri, Cortana, Alexa).
They are usually referred to as “intelligent personal
assistants”, but they still have some way to go before can be
considered as intelligent, personalised, and more than
marginally useful; but if you want to remotely turn off your
home heating, Alexa can do it.

Nowadays we are supposed to be close to the cognitive
singularity point, when the computing capacity of artificial brains
will be greater than human brains. At that point, can we expect
that either computer language or human language will begin to
disappear?

Computer languages taught us a lot about how languages work,
mainly from our attempts to describe the texts (programs and
apps) we produced. We attempted to describe them as logical
structures (how the program was put together), but that told us
nothing about how inputs became outputs. So we attempted to
describe them as information processes (how the data flowed
through the program) but that told us nothing about the

1 Johan Huizinga (1950). Homo ludens: a study of the play element in
culture. Beacon Press: Boston, MA, USA.
2 In a substantial language, unbridgeable translation gaps seldom or never
arise; a sufficient language works well in certain topical areas, less well in

structure that controlled the data flow. Eventually we settled on
describing them as systems (structures with processes). This,
however, is not an easy form of description, but it is inclusive of
the what, when, where and how of data management; and, if
done right, systemic description is much more informative than
structural or processive description. When you are describing
your language, remember to treat it as a communication system
and not just a coding structure or information process.

ARTLANGS FOR FUN!
Languages created for fun often start out as simple codes – and
stay that way. However, some creators take the next step
towards a consistent communication system – phonetic, lexical
and grammatical functionality. This creates a sufficient conlang.

The next step is cultural – building reasons for the language. At
this stage, the language begins to take on its own reality, and
non-linguistic features begin to creep in. Flags and maps are
designed, histories are written, cultures are defined, in-groups
and out-groups established … In the case of nonhuman
languages, this can get quite complex, and the conlang moves
from sufficient to substantial.

The final step, which few artificial languages achieve, is to build a
community of users. This, fortunately, is not part of the module
assignment; which is just as well, because it takes years and only
occasionally happens.

others; a sketched-out language gives a set rules and some lexis, and it
can produce some utterances. You should aim for a language sufficient to
complete your chosen translation.

